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DEFINITION OF SYMBOLS

Definition
Passage area
Fourier coefficient
Coupling function
Frequency of fluctuation
Constant complex number
Constant complex number
Normalized pressure fluctuation
Chord length of alrfoil
Meridional length of tur bopump
Rotational speed of turbopump
Number of airfoils

Pressure

Deviation of pressure from time-mean value

Flow rate through turbopump

Amplitude of flow fluctuation

Radius from axis of rotation

Constant for conformal transformation
Spacing of airfoils in cascade
Sinusoidal gust function

Induced velocity

Moving velocity of rotor cascade
Through-flow velocity parallel to airfoil
Absolute velocity

Unsteady inlet flow in cascade direction
Relative velocity to rotor cascade

Coordinate, parallel and perpendicular
to airfoil

Coordinate, axial and cascade direction
Distributed circulation

Cir culation

viii

Units
m2
dimensionless
dimensionless
Hz
m?/s
m? /s
dimensionless
m
m
rev./s, (rps)
dimensionless
N/m?
N/m?
m?/s
m?3/s
m
m
m
dimensionless
m/s
m/s
m/s
m/s
m/s

m/s

m/s

m? /s



DEFINITION OF SYMBOLS (Concluded)

Symbol Definition Units

°] Polar angle radian

A Stagger angle of cascade radian

v Angular velocity =2 w £ radian/s

p Density of working liquid kg/m?

o Solidity of cascade = £/s dimensionless

] Flow coefficient dimensionless

] Velocity potential m?/s

U] Pressure rise coefficient dimensionless

w Reduced frequency dimensionless

Q Gravitational potential m? /s?
SUPERSCRIPTS

Pertinent to translatory oscillation

~ Pertinent to sinusoidal gust oscillation
SUBSCRIPTS

0 Time-mean value

1 Upstream of cascade

2 Downstream of cascade

a Axial component

C Due to conduit effect

d At pump delivery port

qs Quasi-static condition

R Rotor cascade

s At pump suction port

S Stator cascade

R +S Due to pumping action of rotor and stator

u Component parallel to cascade direction

Pertinent to wake

ix



ANALYTICAL AND EXPER IMENTAL STUDY OF
DYNAMIC CHARACTERISTICS OF TURBOPUMPS

SUMMARY

The response of pressure rise of turbopumps to fluctuating flow rate,
termed the '"dynamic characteristics, " was studied analytically and experi-
mentally, Unsteady flow around a two-dimensional, linear cascade of air-
foils was solved and the frequency response of the deflection angle of the
cascade was calculated for the periodically oscillating inlet condition. Based
on the unsteady cascade theory, the dynamic characteristics of turbopumps
were analyzed. As a sample of the theoretical application, an exact method
for calculating the dynamic characteristics of a single-stage axial flow pump
is shown. For the evaluation of an approximate response, a simplified model
theory was also developed, which enables the calculation to be made without
entering into the details of the pump design.

An experimental investigation was made to determine the dynamic charac-
teristics of a centrifugal pump. The test showed that the analytical calculation
was close to the experimental result, The limiting fluctuating frequency under
which the dynamic characteristics agree with the quasi-static ones, was deter-
mined from the test result. The time constant of the response of pressure
rise to a step-like change of flow rate was also derived.

The entire study was made under incompressible and non-cavitating con-
ditions. If the cavitationoccurs in a turbopump, the phenomena change drasti-
cally from those described in this study.

INTRODUCTION

The pressure rise through a turbopump* varies with the flow rate. The
relationship between them is indicated by the characteristics curve of the
pump. This characteristics curve is valid only when the pump operates in
the steady-state condition, that is, with a constant flow rate. When the flow
rate is no longer steady and changes rapidly, the pressure rise cannot
respond quickly enough to follow along the steady-state characteristics curve,
This results in a considerable change in the actual characteristics curve. The
purpose of this study was to determine analytically and experimentally the
correlation between the flow rate oscillation and the resulting pressure rise

* _Turbopminé include axial flow pumps, mixed flow pumps, centrifugal
pumps etc., which are all classified as turbomachinery.



oscillation of turbopumps, termed dynamic characteristics.

Since the unsteady condition is restricted (in this study) to the case in
which the flow rate oscillates sinusoidally around its mean value with a
constant frequency, the dynamic characteristics are identical to the frequency
response of pressure rise to the flow rate. The dynamic characteristics are
especially important for analyzing the stability of a system in which the
pump is installed. Figure 1 shows a turbopump whose flow rate, Q, oscillates
periodically around its mean value, Q,, because of some outer disturbances.
The pressure at the suction port, pg, and at the delivery port, pgq, fluctuate also
according to the fluctuating flow rate, and the pressure rise through the pump,
Pd - Pgs fluctuates correspondingly. The amplitude and phase correlations
between the pressure rise, pg - Pg> and the flow rate, Q, were the essential
information pursued in this study. The rotational speed of the pump was
assumed to be constant and unaffected by the fluctuating operation.

Many studies (Reference 1 to 3)have beenmadetopredict analytically the
steady state characteristics curves of turbopumps. Mostoftheseare derived
from the consideration of the flow field aroundthe cascade of airfoils,because the
behavior of the cascade is the principal determinant of the characteristics of-
the turbopump. For the same reason, the behavior of the cascade is the
determining factor of the dynamic characteristics of a turbopump. There-~
fore, an analysis of the flow through a cascade of airfoils under the oscillating
inlet flow condition was made as the first step in the theoretical approach and
is described in Section I of this paper. Using this basic result, another analy-
sis was performed to determine the dynamic characteristics of turbopumps
and is described in Section II. Experimental research was also conducted to
determine the dynamic characteristics of a centrifugal pump. The test results
and the comparison with the analytical results are described in Section III,
Interest in this study is limited to the incompressible, noncavitating case.
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SECTION I. ANALYSIS OF OSCILLATING FLOW THROUGH A CASCADE

Two-dimensional, incompressible, inviscid, and noncavitating flow
around a cascade of airfoils was analytically determined for a periocically
oscillating inlet flow, Figure 2(a) illustrates the inlet condition to the cascade.
The unsteady inlet flow, V;, can be considered as a superposition of a steady
inlet flow, V;o, and an unsteady flow, w(X, Y, t). The unsteady flow, w, can
be further divided into two unsteady components, w' and w'', parallel to the
direction of cascade and to the direction of zero-lift, respectively.

The unsteady component, w'', causes no change of circulation around the
airfoils, and represents an oscillating translation flow that can be simply
superimposed on the flow solution, On the other hand, the unsteady compo-
nent, w', parallel to the cascade direction produces a related unsteady circu-
lation around the airfoils, which is to be determined in this Section. From
the previous consideration, the analysis was conducted specifically for the
case in which the unsteady component of the inlet flow is parallel to the cas-
cade direction, as illustrated in Figure 2(b), without losing any generality,

The unsteady component, w, now parallel to the cascade direction, is generally
a function of time and the coordinates.

There are fundamentally two types of unsteady components in the inlet
flow., One is the case in which the unsteady component, w, is expressed as
w =w Exp (ivt)*. In this case, termed "translatory oscillation,'" w is instan-
taneously uniform in the region preceding the cascade and oscillates periodi-
cally with the frequency f = v/2w, Translatory oscillation is associated with
the oscillation of the flow rate, that is, oscillation of axial velocity, V ., In
the other case, w is expressed as w =% Exp (ivt - ivX/V, )%, This oscilla-
tion represents a sinusoidal gust propagating downstream with a velocity of
V,. This case is termed ''sinusoidal gust oscillation'" and occurs as the result
of unsteady circulations of airfoils in the preceding cascade.

To avoid excessive mathematical complexity, the unsteady flow was
analyzed for cascades of flat plates having a zero stagger angle for two types
of inlet unsteadiness. An additional analysis was performed to show that the
results obtained for the cascade of zero stagger angle was also applicable,
with proper modification, to the cascades of arbitrary stagger angle.

s

* The Apﬁ;s'igal meaning of a complex number is attributed only to the real part.
3



Flow Around a Cascade of Nonstaggered Flat Plates
for Inlet Flows with Translatory Oscillation

Flow Configuration - Flow through the cascade shown in Figure 3 is considered.
This cascade consists of flat plates of length, £, arranged with spacing, s, and
zero stagger angle. A vertical translatory oscillation, w = W Exp (ivt), is
superimposed on the steady through-flow, U,, in the direction of the flat plate.
The steady inlet flow with a non-zero angle of attack is not considered here,
because it can be easily added to the unsteady flow field. Since the flow is
assumed to be two-dimensional, incompressible, and inviscid, the unsteady
flow field through the cascade can be obtained by simultaneously solving
Euler's equations of motion and the equation of continuity under the given inlet
and boundary conditions. The potential flow field that satisfies the given inlet
and boundary conditions at any instant agrees with the unsteady solution, as

far as the velocity field is concerned.

To determine the circulation of each airfoil, the Kutta-Joukowski theorem
is assumed for the entire frequency range. The accuracy of this assumption
is not clear in the higher frequency range because of the time lag involved in
the formation of the boundary layer around the airfoil. The circulation around
each airfoil also fluctuates periodically, and this causes shedding of free
vortices into the wake system. The wake of each airfoil, therefore, repre-
sents a vortex sheet with varying intensity. The flow field induced by this
vortex system must be taken into account. To simplify the analysis, wakes
are assumed to be straight and parallel to the direction of through-flow, Ug.

The circulation of each airfoil, I, is divided into three parts, T= 1:0
+ I + Iy'. The flow with circulation T, around the airfoil induces a velocity
distribution that tends to cancel the given inlet translatory oscillation, w
=% Exp (ivt), on the airfoil. This solution represents a quasi-static flow when
the effect of the vortex sheets is not taken into account. On the other hand,
vortex sheets induce a downwash on each airfoil. The flow with circulation I3
induces a velocity distribution for canceling the non-uniform part of this down-
wash on the airfoil, while the flow with circulation I7' induces a velocity dis-
tribution for canceling the remaining uniform part, These conditions are in-
dicated schematically in Figure 4.

In this analysis, conformal transformation is used to obtain the potential
flow solutions.

Conformal Transformation - A cascade consisting of nonstaggered flat plates
in the z = x + iy plane (physical plane) is transformed conformally into a circle
of unit radius in the z' = x' + iy' plane by using the following mapping function

(Reference 4);

S R + z' z' + 1/R
z =5 1nR-z'+1nz'-l/R (1=-1)



where R is a function of the solidity, ¢ = £ /s, of the cascade;

o
+

(1-2)

=}
I

n|=
1l

RN
—
s}

o}

i

-

As shown in Figure 5, the origin of the z-plane is located at the center
of an airfoil, and the x-axis is chosen parallel to the airfoil. Therefore,
z =+ §/2 describes the trailing and leading edge of the airfoil. These points
transform into z' =+ 1 in the z'-plane. Obviously, the flow around the airfoil
in the physical plane corresponds to the flow outside or inside of the unit circle
in the z'-plane, and z =+ ®© in the z-plane is transformed into z' =+ R or
+ 1/R in the z'-plane.

Determination of T, - The flow field, which has the constant induced flow on
the airfoil just opposite to the inlet translatory oscillation, w, can be deter-
mined by the proper distribution of vortices in the z'-plane as illustrated in
Figure 6. The solution, which includes no circulation around the airfoil, can
be obtained in the z'-plane by locating vortices -Ij = - sw at z' = 1/R and I,
at z' = - 1/R. On the other hand, the solution that produces circulation I
around each airfoil is obtained in the z'-plane by locating I4/2 at z' =+ 1/R
and-T,/2 at z' =+ R. The assumed Kutta-Joukowski theorem requires that the
total velocity induced by these vortices approach zero at the trailing edge (z'

= 1), and this leads to the result

_4sR
© "R% +1

gl

w Exp (ivt) (1-3)

Determination of I}' - The circulation distribution YW in the wakes induces
a downwash on each airfoil. This circulation distribution {(Figure 4) can be
o)

regarded as the sum of {1) Yyy on x = £/2 to ©®and - Ny = - f Yw dx at

/2
x = + o0, and (2) PW at x =+ 0, The former distribution (1) induces the non-
uniform part of the downwash, and the latter (2) induces the uniform part on
the airfoil. The uniform part is calculated from the equation

[o.0]
w = Iyw/2s = 1/255. YW dx
£/2

and the necessary circulation for canceling this downwash is determined by
the same process that leads to equation (1-3);

l"'—4SR 2R
1

- = 1-4
RE+ 1V RZ 111w (1-4)



Determination of I - The solution for the non-uniform part of the downwash
is described below. To simplify the analysis, the shedded vortices are
assumed to be located on the straight lines starting from each trailing edge
into the x-direction. First, the effect of the vortices, I‘W, at x = x is con-
sidered. The uniform downwash of these vortices is subtracted by locating
counter-vortices, - I3y, atx = + ©as shown in Figure 7. This flow field can
be obtained in the z'-plane by locating Iy at z' = x' and 1/R and - Ty at z!

= 1/x' and R, where x' is the mapped location of I3y calculated by the mapping
function (equation (1-1)).

To realize the Kutta condition at the trailing edge, circulatory flow around
the airfoil is added to the above by locating Iy /2 at z' =+ 1/R and -I3 /2 at z'
=+ R, where I} satisfies the following relation;

R+1 R - x!
R? +1 x!' - 1PW (1-5)

I =

For the case of distributed vortices in wakes, I} can be obtained by
integrating equation (1-5) along the wake;

R+l R-x
l/Z

In the above derivation, the circulation distribution of each vortex sheet

is assumed to be identical.

Unsteady Solution for Translatory Oscillation - According to Helmholtz's
theorem regarding the persistence of vorticity, the total circulation of the
whole system is assumed to be invariably equal to zero (Reference 5 and 6);

8

T + dx =T, + T, + T,'+ T._ =0 -
z/fzyw 0 1 1 W (1-7)

Putting equation (1-6) into equation (1-7), the following relation is obtained;

o0
_ R +1 R-X'
T 41 (2 1) dx = 0 1-8
o+1+§ RZ+ 1= + Yw ( )
2/2

Since the inlet unsteady component is periodic with a frequency of f = v/2m,
the entire flow field also oscillates with the same frequency, f. It is also
assumed that the vortices in the wakes move downstream with the velocity Uy,
in the x-direction. Therefore, the circulation distribution, )/W, can be
expressed in the form

6



L .
Yw =5 8Exp v (t-%/U )] (1-9)

where g is a constant complex number that describes the amplitude and the
phase of the circulation oscillation in the wakes. Introducing the definition

T, + I}' = Gg Exp (ivt) (1-10)

where G is a constant complex number, the total circulation around the air-
foil, T, can be written

(o]
T = Exp (ivt) [60 +g \ 2
1/2

R+1 R - x!
R? +1 x!' -1

Exp (-iv x/Uy) d (ﬁ?)} (1-11)

Since the wake vorticity is produced by the change of circulation around
the airfoil, the increment of circulation, (dI/dt) dt, must be equal and opposite
to the circulation in the wake between x = £/2 and x =£/2 + Uypdt. Conse-
quently, the relation dT/dt = - Yw{/2) Uy is obtained; that is,

ar | . =
T C v Exp (ivt) [Go

[~)

R+1 R -~ x! 2rx
+gS.2R2+1x'-lEXp(WX/U°°)d - :]
£/2

2 .
= =Yy (£/2) Uy = - -s—“— g Exp (ivt) Exp (-iv £ /2Uc)Uso

The above treatment gives the correlation between Eo and g;

EO- [ (‘ZR_*- 1 R - x Exp (-iv x/Ug) d (ZTTX :l (1-12)

R +1x'-1

'ZvUooEx(i 1)
"l s P \"" 2U,

Using the relations derived from the mapping function (equation (1-1)),



N\
x'-1" 2 2rx\ .., . -
Exp (%{') - Exp (11'0')
> (1-13)
R +1)2 2
R +1 ~ 1+ Exp (-wo)
J
equation (1-12) is written
E’ 2 C ( .
fo) . w, o) i
-—2 - - 2 — _ Ll
g xp (-imwo) [l + Exp (-wo) w] (1-14)
where
_.vs _fs | ) )
w= TrUnm Uoo : reduced non-dimensional frequency, (1-15)
an.
) Exp (——) - Exp (-70o) « 2
C (w, o) = Exp (irwo) - 1| Exp {(-iv=—) d (—
NS; N Exp (wa) Exp (ro) ( Uoo) ( s)
1
) 1-16
S‘|i’l-tlEj:t(2‘rra' I:ltlw-ldt ( )
0
i (1 iw) I'(iw) . .
- (\/}-—m j'+ NS /2 + 10) [F[-l/z, iw, 1/2 + iw; Exp (—ZTTO')J- 1]

The function, C (w, o), represents the coupling effect between the wake and the
airfoil and is expressed by using Gamma function, I' (Reference 7 and 8), and
Gauss's hypergeometric function, F (Reference 9), as in equation (1-16). This
coupling function is illustrated in Figure 8. In the case in which the solidity of
the cascade is comparatively large, say ¢ 2 1,0, the second term of C (w, o)
becomes very small and the function can be approximated only by the first

term;
_ i (1 + iw)
Clw, @ =-3 [“’ T(1/2 + ie) - IJ (1-17)

where C (0, ©) =1n 4 = 1.386.

The integrated flow field can be obtained from the above result as follows:
Upstream of Cascade - Since the total vortices included in the airfoils and

wakes are invariably equal to zero (equation (1-7)), there is no induced velo-
city far upstream of the cascade, Hence, the vertical velocity, w;, far

8



upstream of the cascade is identical to the given inlet translatory oscillation.;
w; =w =W Exp (ivt) (1-18)

Downstream of Cascade - The induced velocity in the y-~direction at x =x
downstream of the cascade, v, (x, y, t), is a function of x, yand t. To

simplify the analysis, however, this induced velocity is averaged over one
spacing, s, thus giving

s/2

Vy(x,t) = 1/s § v, (%, v, t) dy (1-19)
-s/2

As shown in Figure 9, an integration path enclosing the airfoil is set up

extending from far upstream to x = x downstream. Using the definition of
circulation, the following relation is obtained;

X
_sv2=fo+r1+rl'+5 Yy 9x
2/2

= E}'o Exp (ivt) + I} +:io- g Exp (ivt) [Exp (—-iv > - Exp(—'rro')j| (1-20)

X
Uco

From equation (1-4) and (1-7) the following equation is obtained;

2R — 2R =
' :-"EETTl (Ty + Iy +1"1')=_~(-R—m2—(1“0+1“1) (1-21)
leading to
= . = 2R = R%Z +1 = 2R
G, Exp (1vt)=Po-m(I‘o+I‘l)=m I‘O-mf‘l (1-22)

The first term of the above equation is given in equation (1-3), and the second
term can be written as follows;

o0

. R+1 R - x! . x 2mx
rl‘gEXp(“’t)S‘ 2R2+1x'-1EXP('1"Uoo)d(s)
9/2

2 C (w, o)

1+ Exp (-m0o) = :
2C(w,0) i | CGo Exp(ivt) (1-23)

1 + Exp (-70)

1




. L

L.

Substituting equations (1-3) and (1-23) into equation (1-22), C can be deter-
. o
mined:

2C(w,o)

1l 4+ Exp (-wo) _
1 +iw C (w,0) w

1 +iw

E}'o =s [1 - Exp (~70)] (1-24)

Using the relations obtained in equations (1-14), (1-23) and (1-24), each term
of the right hand of equation (1-20) is related to the given inlet translatory
oscillation, and thus the induced velocity, ¥V,, becomes

v, = 1 - Exp (-nw0o)
2771+ iw C (w,0)

Exp [ -iv(x - 2/2)/Uw] W Exp (ivt) (1-25)

The vertical velocity downstream of the cascade is calculated by adding the
induced flow field to the given inlet translatory oscillation;

w, = w Exp (ivt) + v,

1 -~ Exp (-wo)
1 +iw C (w, o)

=W Exp (ivt) {1 - Exp [-iv (x - z/z)/Uoo]} (1-26)

In the case in which the frequency of the inlet translatory oscillation approaches
zero, w C(w, o) also approaches zero, and

w, =w Exp (-mo) (1-27)

This result, of course, agrees with the solution of the steady flow. When the
solidity of the cascade is not too small (¢ 2 1.0), equation (1-26) can be
approximated as follows;

I"(1/2 +iw)
N (1 + iw)

w, =% Exp (ivt) { 1 - Exp [ -iv (x - 1/2)/U°°]} (1-28)

This result is only good for the unsteady inlet flow with translatory oscillation.

The solution obtained in the previous derivation represents a potential flow
that is irrotational. In this case, the vortices are concentrated on wake lines
starting from each trailing edge, and move downstream with velocity Uw , as
shown in Figure 10. When the cascade follows another cascade, the flow down-
stream of the first cascade becomes the flow upstream of the second. The
real outlet flow from a cascade, therefore, imposes a very complicated inlet
condition to the following cascade.

10



To avoid these difficulties, the real outlet flow is replaced by a simplified
outlet flow. The simplification is made by redistributing vortices of yy dx
on wakes (length = dx) uniformly over the region, s by dx, as shown in Figure
10. This simplified flow is no longer irrotational; however, it has a vertical
velocity that is independent of ordinate y. The mean vertical induced velocity,
V,, of equation (1-25) also describes the vertical velocity of the simplified
flow, which is nothing but the sinusoidal gust oscillation,

Flow Around a Cascade of Nonstaggered Flat Plates
for Inlet Flows with Sinusoidal Gust Oscillation

Flow Configuration - The inlet flow has a vertical sinusoidal gust oscillation,
w = W% Exp [iv(t - x/Uqy)], propagating with the main through-flow Ux. The
unsteady circulation, I, around the airfoil is divided into three parts, I'= I,
+ Iy + I}', as shown in Figure 11. The flow with circulation fo induces the
downwash which cancels the given inlet sinusoidal gust on the airfoil so that
the surface of the airfoil becomes a part of the instantaneous stream line.

The flow with circulation Iy and I}' cancels the induced flow by vortices in the
wakes and, therefore, has the same relations as in the case of the translatory
oscillation.

Determination of l"(L - As shown in Figure 12, the flow in the physical plane is
conformally transformed into a unit circle in the z'-plane using the mapping
function (equation (1-1)). To obtain a sinusoidal downwash opposite to the gust
on the airfoil, a more complicated distribution of vortices in the z'-plane is
necessary than in the case of a uniform downwash. A circulation distribution,
Y(8), in the form of

Y(0) = Z A, cos nb (1-29)
n=1
is located on the unit circle. The Fourier coefficients, A}, A,,..., will be
determined so that the induced velocity on the airfoil is opposite to the given
2w

inlet gust. Since the sum of the distributed circulation, \S‘ Y(6) d0, is equal to

0
zero, the circulation distribution produces no circulatory flow around the air-
foil as a whole.

An additional circulation is superimposed on the flow by lacating fo/Z at
z' =+ 1/R and - I'y/2 at z' =+ R to satisfy the Kutta-Joukowski theorem at the
trailing edge.

The velocity (u', v') induced by the circulation distribution Y(8) at z' = lis

o 2T

R -1 n cos nb

(al = iv ) = 20 Zyl-Exp(le) ds
n=1 0

11



Since the integrand becomes infinity at z' =1 (6 = 0), this integration is
carried out along the path shown in Figure 13 and gives

2m-¢

o0
. lim i Apn cos nb
v 1 - _— < LOs BY
I Z 5 1 - Exp (i0) 9°

n=1 ¢
the above = 0

S 08
g
=}

(%} +e
i N\ do . 1
t Zn Z An f 1-Exp (i0)| 2 (1-30)
n=l ~€
Hence, the induced velocity at z' =1,

S
J, A
n=1

2

must be canceled by the proper circulatory flow, and this necessarily leads
to the result

o0 0
~ RZ -1 \ N
Ty=-m 21 A = - msech (wo/2) /) A (1-31)
n=1 n=1

The velocity induced by the circulation Y(0) at an arbitrary point on the unit

circle, z' = Exp (i6y), is written as follows;
90 90 +21T—€
lim i \ An cos n@
1 _ it - — B d
(u v )z' ¢ - 0| 2w Z S‘ Exp (i8p) - Exp (i8) 0
n=1 O +¢

o0 90+€
i\ de
o A
t o Z n €0s nf, S Exp (i0,) - Exp (i0)
n=1 Oqg-¢

0
Exp (-18y) Z A Exp (-inB,) (1-32)

n=1

L
2
The velocity field (u, v) in the z-plane can be calculated from the velocity in

the z'-plane using the relation

(u - iv) = (' - iv') %Z;' ' (1-33)

12



dz!
where —= is derived from the mapping function (equation (1-1));

dz
EZ—) _2m [R? - Exp (2i0,)] [Exp (2i6,) - 1/R?] (1-34)
dz/ i 2Exp (i0,) ° 2 (R + 1/R) [Exp (2i6,) - 1]

Substituting equations (1-32) and (1-34) into equation (1-33), the expression
is obtained for the induced velocity in the z-plane;

o)
] 27 (R + 1/R)% - 4 cos?® 6 Y .
- = — = A E - -
v w 8(R + 1/R) sin 0 /, fn Exp (-in6) (1-35)
n=1
or 00
2r (R + 1/R)? -4 cos?9 Z .
= = A -
V=T 8(R+1/R)sin® n Sin né (1-36)
n=1
at a point on the airfoil corresponding to z' = Exp (i0) in the z'-plane. In the
previous derivation, all of the Fourier coefficients are confined to real num-
bers. If not, the horizontal induced velocity, u', at z' = 1 can take a certain

finite value that cannot be canceled by adding circulatory flow around the air-
foil, and the Kutta-Joukowski condition cannot be satisfied.

Next, the complex Fourier coefficients, A, are introduced and replace
the real coefficients, An, in equation (1-36) with the real part of A, Exp (ivt);

2r (R + 1/R)% - 4 cos?0
s 8RR +1/R) sin 0

00
Z A, Exp (ivt) sin n6 (1-37)
n=1

Since the circulatory flow around the airfoil with circulation fo induces
no vertical velocity component on the airfoil, equation (1-37) describes the
total vertical component. To satisfy the boundary conditions on the airfoil,
the vertical induced velocity must be equal and opposite to the given inlet
gust. Thus,

v+w=v+wExp (ivt) Exp (-iv x/Ug) =0 (1-38)

Substituting equation (1-37) into equation (1-38), the following equation is
obtained;

)
\ . s 8(R +1/R)sin @ ~ (i _
Z A, sin n@ = - 27 (R + 1/R)? - 4 cos? © w Exp (-iv Uoo) = £(8) (1-39)
n=1

13



Since the above function, f(0), is symmetrical about 6 = w, the function can
be expressed only by a sine series. The Fourier coefficients, A;, A,,....,
are determined by

2
A, =1/w 5 £(0) sin nO 46 (1-40)
0
Hence, the sum of the Fourier coefficients is
0 2w
A = 1/w Z 5 f(0) sin n6 d6 (1-41)
n=l O

o718

n=1

Using integration by parts, the following equation is obtained;

- 0 217' fore)

cos nO 2w cos no
D A= umy @B 2y () ) 0200 g
n=1 n=1 0 n=1

the above =0

The relation,

cos nb

=-1n (2 sin 6/2), for 0 <6 < 2w

18

1)
e

n

leads further to the following expression;

. 2w
Z A =-1/v S‘ £f'(6) In (2 sin 6/2)d6
n=1l 0
2
= - 1/ | £(8) 1n (2 sin 8/2) I(Z)Tr + l/Z'n'S. £(8) cot (6/2)de
the above = 0 0

This integral will be finally conducted in the z-plane after being transformed
by the following relations;

s 4(R + 1/R)sin©
" 27 (R + 1/R)*-4cos?

dé = dx,

Exp (——sz) - Exp (-mo)

cot 6/2 = Exp (wo/2)
Exp (wo) - Exp E:—"—)

14



The result is
X, . (1-42)
Z A, =- - Exp (-wo/2) [ Exp (no) - Exp (-wo)] Exp (-imwo) S (w, o) W
where

1 Exp (o)
™ Exp (vo) -~ Exp (-mwo)

S(w,0) = Exp (inwo)

172 Exp ( ) ) Exp (-mo)

§ oo S )

x=-4/2

1l +iw

S‘f 1+B dt,
1 -t

B = 1/[Exp (2wo) - 1]

The sinusoidal gust function, S(w, o), can be calculated by expanding the
integrand into a power series of t, and is written as follows;

S(w,o) == F [1/2, 1 +iw, 2; 1 - Exp (-2wc)] (1-43)

1
2

_ tanh (ww) (1 + iw) _ o
= N /2 + i0) F[1/2, 1 +iw, 1/2 + iw; Exp (-2mwo)]

_ Exp (-mo) Exp (2imwo) I"(1/2 +iw)

N7 (1 - 2iw) (1 + iw) F[3/2, 1-iw, 3/2 - iw; Exp (-270)]

This function is illustrated in Figure 14. As seen from equation (1-43),

S{w, o) oscillates slightly with the reduced frequency w, since it contains a
periodic term, Exp (2imwo). When the solidity of the cascade is not too small,
this oscillation is not essential. In the case in which the solidity is compara-
tively large, this function can be approximated by

tanh (tw) I'(l + iw)
T w I(1/2 +iw)

S (w, ) =% F(1/2, 1 +iw, 2; 1) = (1-44)

1
1 +iw C (w, )

= complex conjugate of

15



In the limiting case of w = 0, the function becomes

5(0,9) = T Em (ore) (1-45)

[20]
By substituting the real part of Z A Exp (ivt) into equation (1-31), the

. n=1
circulation around the airfoil is found to be

fo =2s [1 - Exp (-wo)] Exp (-irwe) S (w, o) W Exp (ivt) (1-46)

Unsteady Solution for Sinusoidal Gust Oscillation - As illustrated in Figure 11,
the total circulation, I, around the airfoil consists of Iy, I’y and I';'. Since
the total circulation of the system remains invariably zero,

o
F0+fy dX=F0+F1+F1'+FW:0

g2 W

An analysis similar to that leading to equation (1-14) yields the expression

ao
- -E— = Exp (-itwo)

2C (w,0) i
1 + Exp (-wo) T w

where

G, Exp (ivt) = Ty + Ty,
— 2_71 E ~
Yow = s 8Exp [iv (t - X/Uoo”

The integrated flow field for a given inlet sinusoidal gust oscillation,
w = W Exp (ivt) Exp (-iv x/Uy), can be obtained as follows:

Upstream of Cascade - Since the total vortices included in the airfoils and
wakes are equal to zero, there is no induced velocity at a sufficient distance
upstream of the cascade. Therefore, the vertical velocity, w;, far upstream
is equal to the given inlet sinusoidal gust oscillation;

w; =w =w Exp (ivt) Exp (~iv x/Ucw) (1-47)
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Downstream of Cascade - The induced velocity, v,, at x = x downstream of
the cascade is determined in a manner similar to the case of translatory
oscillation;

X

-sx72=fo+r1+r1'+§7'wdx (1-48)
2/2

~ . i . .
= G, Exp (ivt) + Ty +2 8 Exp (ivt) [ Exp (-iv x/Uy) - Exp (-m0)]
Further,
~ . R%2 +1 =~ 2R
GO EXP (1Vt) = (R + 1)2 FO = (R + 1)2 rl (1—49)

where

fo =2 s {1l - Exp (-wo)] Exp (-irtwo) S (w,0) W Exp (ivt),

[ 2C (w,0)

| 1+ Exp (-wag) ~ .

B 2C (w1 |Co Fxp (vt)
1+ Exp (-m0)

From the above,

14w 2 S @a)

~ L . 1+ Exp(-70o) .
Gy =s [1 - Exp (- 2mo)] Exp (-irwe) S (w, o) 17 10 C (@, 0) W

(1-50)

Each term of equation (1-48) can be expressed in terms of the given inlet
sinusoidal gust oscillation, and the induced velocity, 32 , becomes

¥, =- [1 - Exp (-270)] = S(w, o)

T+ 0 C (@, 0) w Exp (ivt) Exp (-iv x/Uy) (1-51)

where ¥V, represents the mean value on one spacing, s. Finally, the vertical
velocity downstream of the cascade is

w, =W Exp (ivt) Exp (-iv x/Ug) + ¥, (1-52)

= ¥ Exp (ivt) Exp(-iv x/Ug) {1 - [ - Exp (-2mo)] 7 isw(wc, ((ru)> 0')}

17



For a comparatively large value of solidity (¢ 2 1,0), equation (1-52) can be
approximated by

o (1-53)

w, = % Exp (ivt) Exp (-iv x/Ug) [1 . Emh_("w)]

Whenw =0, wC(0,0) =0 and S(0,0) = [1 + Exp (-wo)]"!, thus w, = W Exp (-wo).
This result agrees with the solution for steady flow. The above result gives
the unsteady flow solution only for an inlet flow with sinusoidal gust oscillation,
If the inlet flow has combined translatory and sinusoidal gust oscillation, the
solution can be obtained by superimposing both flow fields,

When the inlet flow oscillates periodically, the lift acting on the airfoil
also oscillates periodically. This unsteady lift is calculated for both trans-
latory and sinusoidal gust oscillation, and is given in the Appendix of

Reference 10,
Solution for a Cascade with an Arbitrary Stagger Angle

Flow Approximation and its Accuracy - The dynamic property of a cascade
having an arbitrary stagger angle are analyzed. Since the exact solution for
this case can be expressed only with impractical mathematical complexity,

an approximate method is adopted. Flow through a staggered cascade of

flat plates, as shown in Figure 15 (a), is considered. The inlet flow is a
superposition of through-flow, Uy, in the direction of the flat plate (x-axis)
and a translatory or sinusoidal gust oscillation in the direction of the cascade.
First, the flow fields through nonstaggered and staggered cascades having the
same solidity are compared (Figure 16). Both inlet flows are assumed to be
steady and have the same through-flow, Uy, and the same w in the cascade

direction,

The influence coefficient, k, of the staggered cascade (Reference 4) is

R cos 0T
R%2 +1 cos \ (1-54)

_4s
Ry

where R and O are characteristic numbers included in the mapping func-
tion that transforms a staggered cascade into a unit circle in the z'-plane, as
illustrated in Figure 15 (b). R and 6 are determined by solving the
following equations simultaneously;

R2 + 2R cos 6T + 1
R%Z - 2R cos 67 + 1
2R sin 0T
R? -1

c=12/s =1/xw (cos X in
+ 2 sin \ tan~! (1-55)

2
tan O =-§-Z—+%tan)\.
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The ratio of the circulation of staggered and nonstaggered cascades is written

r __T/fg=0 Tg=0 __X Tg=0 (1-56)

Txzo0 Thzo/fno=0 B,e =0 *n=z0Troe=0

Since I' ; = O/I‘x’ o = 0 indicates the circulation ratio of the isolated airfoil,
this ratio is proportional to the vertical velocity component in the y-direction,
and thus,

I'g=
= =0 _WCeoSh _ ;s\ (1-57)
\,0 =0 w

From equation (1-54), (1-56) and (1-57),

_R_ cos OT
2
r _R°+1 = function of (c, \) (1-58)

r)\=0 __..R'_
Z +1
A=0

Figure 17 shows the numerical values of equation (1-58). Note that the
circulation ratio remains close to unity if the solidity, o , does not become
too small. From the definition, fo/(f‘-o))\ =0 and I'}'/(I'y')y, - are exactly the
same as T/l")\ -0 of equation (1-58) and are approximately unity. Through a
similar comparison it can also be concluded that I'4/(T)y =g and I'}/(Ty)y = ¢
remain close to unity if the solidity, ¢ , does not become too small. The
above comparison shows that the result obtained for a nonstaggered cascade
can also be applied to a staggered cascade with reasonable accuracy, provided
that the unsteady flow component in the direction of cascade is the same for
both cascades.

This approximation is, of course, not sufficiently accurate for determin-
ing the steady flow solution. However, since we are mainly interested in the
dynamic characteristics of cascades, this approximate method seems to be
reasonable,

Results

Translatory Oscillation Case

At a sufficient distance upstream of the cascade;
Uw in the x-direction,

w; =W Exp (ivt) in the cascade direction.
Downstream of the cascade;

Uy in the x-direction,
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- E -
w, =W Exp (ivt) {1 - [11+ imxé) (f.o:rg] Exp [-i%; (x-y tan \ - é—)]} (1-59)

in the cascade direction, where

w=—YS___vs
T 21Up 27V,

cos \

Sinusoidal Gust Oscillation Case

20

At a sufficient distance upstream of the cascade;

Uw in the x~direction,
L4
U

w; =w Exp (ivt) Exp l:-i (x-y tan )\)] in the cascade direction.

Downstream of the Cascade
Uw in the x-direction,

[1- Exp (-2n0)] S (w,0)
- 1+ iw C (w,0)

w, =W Exp (ivt) Exp [-i ?Jvto (x-y tan X)] {1 } (1-60)

in the cascade direction



SECTION I1. ANALYTICAL STUDY
OF DYNAMIC CHARACTERISTICS OF TURBOPUMPS

Using the results obtained in the previous Section, a theoretical analysis
was performed to determine the relationship between pressure rise and flow
rate through a turbopump when the flow rate fluctuates periodically aroundits
mean value at a constant frequency and while the rotational speed of the turbo-
pump is constant.

There is a wide variety of principles of turbopump construction ranging
from the single-stage axial flow pump to the multi-stage centrifugal pump.
Since the working principle of the axial flow pump is based purely on the per-
formance of a linear cascade, the axial flow pump offers the most fundamen-
tal case for theoretical application. Therefore, a method for determining the
dynamic characteristics of a single-stage axial flow pump is described first.
This method serves as an example of the theoretical approach for determining
the dynamic characteristics of an arbitrary turbopump. A simple method is
also derived for the case when approximate dynamic characteristics are
sufficient., This method determines the dynamic characteristics without enter-
ing into the details of pump design,

In these analyses, the flow was assumed to be incompressible and inviscid.
The effect of eventual cavitation in the pumps is not considered.

Dynamic Characteristics of a Single-Stage Axial Flow Pump

Pressure Difference Due to Oscillating Through-Flow in Conduit - The analy-
sis was conducted on the axial flow pump illustrated in Figure 18. This pump
has only one stage consisting of a rotating blade row (rotor) and a following
stationary blade row (stator). The rotor is driven by a prime mover at a con-
stant rotational speed, n. The flow rate through the pump, Q, is assumed to
fluctuate periodically with a frequency, f, around its mean value, Qy. Assuming
also the sinusoidal fluctuation, the instantaneous flow rate is

Q(t) = Qy + &Q Exp (ivt), (2-1)

v = 2nwf

where the physical meaning of a complex number is attributed only to its real
part.

In the actual pump, the flow pattern around the rotor and stator varies
with radius, r. For the calculation of dynamic characteristics, however, a
representative radius, L is chosen for the analysis as shown below;

_ l‘tz + rh2
ro. —\/——-———-2 (2-2)
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where ry and ry are outer and inner radii of annular passage. This repre-
sentative radius has been used often for the analysis of steady-state charac-
teristics and has proved to give good results (Reference 11).

By developing the cylindrical flow surface of radius r,, into a plane, a
two-dimensional flow is obtained as shown in Figure 19, where the rotor cas-

cade moves straight in the cascade direction with a constant velocity, u =
2Tnr .

Since an incompressible, two-dimensional flow is assumed, the axial
velocity, V_, remains constant upstream and downstream of the rotor and
stator.

a

The flow pattern of an axial flow pump is in most cases the free vortex
type, especially when the pump is not provided with inlet guide vanes as
illustrated in Figure 18.

The free vortex type flow pattern assures the constant axial velocity over
the entire radius, and thus

Q(t) .
Va(t) = m = Va.o + AVa Exp (ivt) (2-3)
where
Q AQ
- —0 -
Vao - Tr(rtz _ th) ) AVa = -n'(rtz _ rhz)

The mean velocity triangle at each station is illustrated in Figure 19.

The pressure difference between the delivery and suction ports of the
pump, (pgq - Pg), oscillates periodically corresponding to the fluctuating flow
rate. As the first step, the pressure difference will be calculated when there
are no cascades between suction and delivery ports. This case represents an
oscillating flow in a conduit with varying sectional area as shown in Figure 20.
If only one-dimensional flow in the conduit is assumed, the velocity in the con-

duit, V(X, t) is

o) _ Qo , AQ
A(X)

VX, t) = Exp (ivt) (2-4)

TAX) T AX)

where A(X) is the sectional area at distance X downstream of the suction

reference point,

The pressure gradient, 9p/9X, in the conduit can be calculated by substi-
tuting equation (2-4) into the equation of motion for a non-viscous, incom-

pressible fluid

1l 8p _ 8V v
"5 ax T et T Vax (2-5)
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In the usual design practice, the change rate of sectional area, 9A(X)/0X,
is made as small as possible to reduce fluid losses, and this results in a
small change rate of through-flow velocity, 9V /oX,

From the above, the first term of equation (2-5) is predominantly larger
than the second term, and consequently

op __ oVv_ ., BL0 ;
5% = pat——plvA(X) Exp (ivt)

By integrating the above pressure gradient from the suction port to the
delivery port,

L
- : . AQ Ao
Pq - Pg = -~ piv Exp (ivt) A, g- —A(X) dX
X=0
= ~ piv AV, Leq Exp (ivt) (2-6)
where
A, =m(r¢® - rp?) : area of annular passage,
L
_Bg_ i
Leq = A(X) dX : equivalent length.
X=0

The above pressure difference occurs independently of pumping action
and is regarded as an inherent property of the conduit.

The dimensionless pressure difference, hC, indicating the conduit effect
is thus

(Py-p) L
hC =_,_d____s_c_ = . Zivﬂa —e9g Exp (ivt)
£ 42 u u
2
Lg AQ
= _ 23 —29 i (2-7
2iw T 0. ¢ Exp (ivt) )
where
VY f
w="—" = reduced frequency of pump,
Vao .
¢ = v flow coefficient.
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As seen from equation (2-7), hC always varies with 90° delay to the
fluctuation of flow rate throughout the entire frequency range, and the magni-
tude is proportional to the frequency, f, ata constant fluctuation ratio, AQ/QO.

Change of Pressure Rise Through Rotor - The rotor cascade consists of
arbitrary airfoils arranged with arbitrary spacing and stagger angle as
indicated by a broken line in Figure 21. This cascade is then substituted by
a cascade of flat plates that have the same chord length as that of the airfoil
and are located parallel to the zero-lift inlet direction of the original airfoils

in the cascade.

The absolute inlet velocity into the rotor has no component in the cascade
direction and has only the axial component V, = V,, + AV, Exp (ivt), which
oscillates periodically.

The relative inlet velocity, W, into the rotor is obtained by superimpos-
ing axial velocity on the constant peripheral velocity, u, vectorially.

It is now assumed that the flow field corresponding to the mean steady
inlet flow, W,;,, has been solved already by an appropriate method (Reference
12 and 13), and that the mean pressure rise through the rotor has been deter-
mined from this flow field. The deviation of pressure rise from its mean

value is determined below,

The unsteady axial component, AVa Exp (ivt), upstream of rotor is divided
into two components, AV, sec AR Exp (ivt), in the direction parallel to the flat
plate, and W; = - AV, tan A\ Exp (ivt), in the cascade direction where AR is
the stagger angle of the simplified rotor cascade.

The component, AV, sec Ap Exp (ivt), which is parallel to the zero-lift
direction of the original cascade, induces no circulation around airfoils and
thus passes through without causing any change of flow field. On the other
hand, W; in the cascade direction represents a translatory oscillation of inlet
flow and induces a fluctuating circulation around the airfoils,

The solution for this case is already obtained in Section I as follows: For
upstream of rotor,

%, = w Exp (ivt)

where
W= - AVa tan )\R (2-—8)

For downstream of rotor,

\_X.IZ =\7’1 +VZ (2—9)
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where

£

. . R
Exp (ivt) Exp |-iv(X - S cos )‘R)/Vao:l »

1 - Exp(-woR)
+ in C(wR,O'R)

¥, = AV, tan AR

VSR cos AR w

“R " 2nUw = Ngo

In the above relation, si is the spacing of the rotor cascade and Ny is the
number of rotor blades. The coordinate systems, (x, y) and (X, Y), are
illustrated in Figure 21.

The flow field downstream of the rotor cascade is obtained by superimpos-
ing AVa sec A\ Exp (ivt) in the x-direction and W, of equation (2-9) in the Y-
direction. The superposition of AV, sec \g Exp (ivt) and the first term of
equation (2-9) produces a simple oscillating flow, AV, Exp (ivt), in the axial
direction that is equal to the given inlet unsteady condition. The disturbance
induced by the rotor cascade exists only in the second term of equation
(2-9). The flow field downstream of the rotor is, therefore, the superposition
of the mean flow, W,, (steady); axial oscillation, AV, Exp (ivt); and the induced
disturbance, ¥,, in the cascade direction as illustrated in Figure 21, The
associated pressure change is calculated from this flow field,

The basic equation for determining the pressure of incompressible, potential
flow is

P8 o, v pge 2-

o "ot 5 (t) (2-10)
where

¢ velocity potential

Q potential due to gravity

V  resultant velocity of fluid

F  arbitrary function to fit initial condition

The gravitational potential, 2, produces merely the hydrostatic pressure field.
Therefore, the potential, 2, is omitted hereafter by considering the difference
of real pressure and hydrostatic pressure.

To calculate the pressure by equation (2-10), it is necessary to determine
the so-called "impulsive pressure, p(9%/9t)." Since the velocity potential of
the mean steady flow is also steady with respect to time and does not contribute
to impulsive pressure, only the velocity potential of unsteady flow is significant.

The unsteady velocity potential is divided into three parts; &; is due to
through flow, &, is due to vertical translatory flow,and ®; is due to induced flow
as shown in Figure 22 (a), (b) and (c).
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The superimposition of through-flow and vertical translatory flow gives
the oscillating flow in the axial direction. Using the X, Y coordinate system

shown in Figure 21,

u = AV, Exp (ivt) in X-direction
v = 0 in Y-direction

and thus,
®; + &, = AV, X Exp (ivt)

Differentiating the velocity potential as to time, the impulsive pressure is

0 Mﬁ{—iﬁ = piv AV, X Exp (ivt)

This impulsive pressure results in the same pressure difference given
by equation (2-6), and was already taken into account as a part of h in equa-
tion (2-7). Therefore, the contribution of &; and &, to the impulsive pressure
need not be considered again,

The flow corresponding to €3 is induced by vortices in the airfoils as well
as in the wakes and has the velocity and pressure distribution that are a func-
tion of X, Y, and t downstream of the cascade. However, as far as this real
downstream flow is approximated by the simplified flow as shown in Figure
22 (d), it is obvious from the equation of motion that the pressure, p,, is
instantaneously constant anywhere downstream of the cascade. Thus, the
pressure downstream of the cascade is equal to the mean pressure at the exit
line of the cascade at any instant.

The detailed analysis on the effect of ;3 on the pressure at the exit line
of the cascade (Reference 14) leads to the conclusion that the impulsive pres-
sure, p(0®%;/9t), producesalocalpressure gradient betweentwo adjacent blades,
but its mean value over one spacing becomes zero. Since only the mean
pressure over a spacing is of interest, the contribution of &; to the down~
stream pressure, p,, can be omitted from consideration.

It has become obvious that the impulsive pressure term, as well as the
gravitational potential term, can be dropped from equation (2-10).

The pressure is finally calculated by

Ve = F(t) (2-11)

=

B,
o)

From the velocity triangle in Figure 21, the instantaneous velocity head

upstream of the rotor is
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1/2 {[Vao + &V, Exp (ivt)]® + W 2}

where the subscript u denotes the component in the cascade direction,

On the other hand, the velocity head at the exit of the cascade is from
equation (2-9)

1/23[Va0 + AV, Exp (ivt)}z

1 - Exp (-woR)

2
+ [Wuzo + AV, tan AR Exp (ivt)] i

From equation (2-11), the deviation of pressure rise from its time-mean
value, Apr, is

P

=1/2 (w - {Wuzo + AV, tan Ag 1” = Exp (TR gy (ivt)}z)

ulo + iwg C(o.)R, R.)

- 1/2 (Wum2 - Wuzo?‘)

tan \g[1 - Exp (-moR)]
1 + iwg C(wR, o-R)

~_ W - AV

p0 a Exp (ivt) (2-12)

In the above, AV, is assumed to be small and the term of AV_? is neglected.
The dimensionless pressure change is then

Ap 1 - Exp (-woR) w. JA'Q)
hR = R - 2 tan A\ 113 PC R Y20 —Q— ¢ Exp (ivt) (2-13)
zﬂuz + iwg (wR, o'R) u o

Change of Pressure Rise Through Stator - The inlet flow to the stator contains

two kinds of inlet unsteadiness. The oscillating axial component, AV, Exp (ivt),

produces a translatory inlet oscillation, W; = - AV, tan Ag Exp (ivt), to the
stator similar to the case of the rotor., Besides this, the disturbance velocity
induced by the rotor generates a simulated sinusoidal gust oscillation upstream
of the stator and makes the flow through the stator more complicated than the
flow through the rotor.

The flow downstream of the stator includes two kinds of distrubance, one
resulting from translatory inlet oscillation, and the other from sinusoidal gust
oscillation.

The flow caused by the oscillation of axial flow is solved in exactly the
same way as in the case of the rotor, The flow downstream of the stator is
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represented by
AV, Exp (ivt) in the X-direction,

- _ 1 - Exp (-Tog)
V2 =4V, tan Ag 1 + ing Clwg, og)

o . fs
Exp (iyvt) Exp [—1v(X - cos )‘S)/Vao]

in the Y-direction

where coordinate (X, Y) is illustrated in Figure 23,

On the other hand, the flow upstream of the stator contains a sinusoidal
gust expressed generally as

W, = w Exp (ivt) Exp (-ivX/V,,)

where W must be specifically so determined that the disturbance induced by
the rotor can be properly transmitted into the coordinate system of the stator.
From the condition that the above equation at X = - [d + £g/2(cos \g)] coincides
with equation (2-9) at X = IR/Z(cos AR), the inlet sinusoidal gust to the stator
has the form

£

~ 1 - Exp (-TOR) - ~S
w; = - AV, tan )\R T +iog Clog, oR) Exp| -iv(d + > cos )\S)/VaO (2-14)

Exp (ivt) Exp (-ivX/Vao)

The solution for a given inlet sinusoidal gust is solved in the previous

Section in which the flow, V'?;z , downstream of the cascade is known

S(wg, og) )}

1+ iws C(ws, og (2-15)

W, =Wy + YV, = Wy {1 -[1- Exp (—2TT0'S)]

where

__VsS _ cos g
“S = 2nUw = Ngé °

and

sg is the spacing of the stator cascade,
Ng is the number of the stator blades.

The first term of equation (2-15) is a sinusoidal gust oscillation, which
merely passes through without any change, while the second term indicates
the induced disturbance because of the inlet gust flow. The entire flow field is
obtained by superimposing the steady mean flow, the translatory oscillation
flow, and the sinusoidal gust oscillation flow as illustrated in Figure 23,
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For the calculation of pressure, it is necessary to consider the effect of
impulsive pressure, p(0%/3t). So far as the translatory oscillating inlet flow
into the stator is concerned, the effect of impulsive pressure is restricted to
the generation of pressure gradients within a spacing as in the case of the rotor,
and thus can be omitted from the consideration.

Besides the translatory oscillation, the flow around the stator is accom-
panied by the sinusoidal gust oscillation, which is no longer irrotational flow
and for which the velocity potential does not exist. This circumstance makes
the determination of pressure very difficult, since the fundamental relation
for pressure, equation (2-10), does not hold for rotational flow, To avoid this
difficulty, the real sinusoidal gust inlet flow is replaced by the modified flow
field as illustrated in Figure 24 (a).

In the modified flow, the inlet flow has no gust oscillation and is conse-
quently irrotational. Instead of this steady inlet flow, the airfoil itself
oscillates with the velocity - W; in the cascade direction, so that the airfoil
encounters the same relative velocity to the fluid. Ewven through this exchange
of inlet and boundary conditions, the same circulation distribution will be
obtained in the airfoil and in the wake as that of the original flow, provided
I\?zl l <<V,,- This replacement, however, has an essential advantage because
there exists a velocity potential. Therefore, the effect of impulsive pressure
will be calculated from the modified flow field.

The unsteady velocity potential of modified flow is divided into two parts,
®, and &;. The potential $, is generated by the unsteady vortices in the air-
foil and wake that are conditioned by the oscillating motion of the airfoil.

An analysis similar to that leading to the result p(8®,;/8t) has no effect on
an average pressure of rotor cascade, gives the conclusion that the impulsive
pressure, p(9%,/0t), generates merely a pressure gradient between two
adjacent blades, and has no effect on the average pressure over one spacing.
Since we are not interested in the local pressure but rather in the average
pressure, the effect of impulsive pressure, p(9&,/9t), can be dropped from
equation (2-10).

Besides the unsteady circulation, each airfoil has a steady, distributed
circulation, Y,(X), over its airfoil, The total steady circulation I of the
airfoil is the sum of distributed circulation, and thus,

%cos)\

I‘o = S‘ YO(X) dX = (Vuzo -V )s

X=-%cos)\

In the case when the airfoil does not move, this steady circulation causes
no change of velocity potential as to time and produces no impulsive pressure.
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In the modified flow, however, the airfoil is in an oscillating motion,
and this causes an associated time-dependent velocity potential field, @;.

Now the velocity potential can be calculated of a strip of cascade with
width dX, which is moving with velocity -w; in the cascade direction, cf.
'Figure 24 (b). The time-differential of the velocity potential at point 1
sufficiently upstream of the strip is

) ), ), -

Since only the relative motion between point 1 and the strip is essential,
the point 1 is supposed to move with velocity 8Y/dt = W, in the above deriva-
tion, instead of considering the strip as moving with -%;.

From the same analysis, the time-differential of the velocity potential
at point 2 sufficiently downstream of the strip is

(a§5) _ Yo dX _
at/), =~ 2s 1

From the above, the difference of time-differential across the cascade
becomes

) ( ) Yo 71 4x (2-16)

The integration of equation (2-16) over the airfoil gives the total -difference of
time-differential due to total circulation on the airfoil; thus,

y]
> cos A
(at ) ( )2 =% § Y, (X) Wy (X, t) dX
J
X =- > cos Y
£
> cos bN
== Exp (ivt) Yo (X) Exp (-iv X/V_ ) dX (2-17)
s o a0
£
-3 cos A

To carry on the above integration, the distribution of Y, (X) must be given,
which is different in each case according to the geometrical shape of the airfoil.
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It is assumed here, however, that the circulation distribution changes linearly
from its maximum at the leading edge to zero at the trailing edge. Thus,

2X

Y =__0__(___.
o (X) f cos \ 1 { cos \

(2-18)

Substituting equation (2-18) into equation (2-17) and integrating over the
airfoil, we obtain

. -
sin Two .
( ) ( ) = Exp (1vt)[ oo -Exp(rrrcoO')J (2-19)
where
Vs VS cCOS A
w = =

21U 2wV,

This result should be considered for the calculation of pressure around
the stator.

The pressure downstream of the exit edge of the stator is consideredtobe
constant for the same reason as for the rotor, and the pressure difference
upstream of the stator and at the exit edge of the stator is calculated by equa-
tion (2-10).

The deviation of pressure rise Apg, through the stator from its time-
mean value is thus,

Apg 1 ) ) 0 0% 1
—_— 2 _ = End —=5 =5 = 2 2
=3 [Vu20 - (Vyuze + V2 +vz)}+[(at)l -(at j‘z(VuZo 'Vu30>

Substituting equations (2-14),(2-15) and (2-19) into the above and neglecting
the term of AVaZ gives

(2-20)

LPs vy v
‘,E-“ana

« Exp (-wog) 1 - Exp (-2m0g)

P "

tan AR ] + iog Clog, og) 1 ¥ iug Clag, og) S{wg, og) xp[ iv(d + fg cos )‘S)/vao]
sin 71 wg ¢ g

1~ Exp (~mo p) [ Tws oS

- Exp (imwg o's)J
]Exp (90 = V= Vaagg MV 8B AR T e

1 - Exp (~-wog)
S 1 +iwg Clug, og)

'
+ tan ) Exp [-iv(d +—25— cos xs)/vm,] Exp (ivt)

oR) Twg ¢ g
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The dimensionless pressure change is then

(2-21)

1 - Exp (-7moR) 1 - Exp (-2wog)

Ap, 1 - Exp (-mog) v,
hg =—S :-2({taan T — s }—“l-n
L,z +iwg Clwg, o) 1 + iug Clug, og)

S(ws, og) Exp [-iv(d +4g cos )“S)/vaoj| + tan Ag m m

[sinmwg og .
1 - Exp (-wop)  i|— ag o5 " Exp (lmws o5}| (Vy, - Vy,,) ) 1g o0 _
. - ———————— Exp | -iv(d + 5 cos Ag)/Vaq )—6; & Exp (ivt)

tan\g T—FT— 75— ————2 D
+tan R1+imR Clwgr, og) T wg 0g u

The total unsteady pressure difference between the delivery and the
suction ports of the pump is obtained by summing up hg, hr, and hg:

Pg-P Pq-P .

h = d S_(d S) =hc+hR+hS (2-22)
L 2 %uz 0
2

In the case of f = 0, the above becomes
Vu
hgs = - Z{tan )\R[ 1 - Exp (—TTO‘R)] [1- Exp (-TTU‘S) -—u&]

X‘_l_s_o_ AVa
+tan Ag [1 - Exp (-mo ] — } -

and agrees, of course, with the pressure change when the axial velocity
increases steadily by AV,, assuming the flow through a cascade of flat plates

without losses,

Using the result obtained, a sample calculation is carried on for a typical
single-stage axial flow pump. The basis of the calculation and the result are
both illustrated in Figure 25, As seen from this result, hS has a phase delay
that increases nearly proportional to the reduced frequency. The reason for
this delay is that a part of this pressure fluctuation is caused by the sinusoidal
gust oscillation produced by the rotor, and the gust requires time to reach the
stator where the disturbance velocity is converted into pressure,

It is also worth mentioning that the pressure change due to conduit effect,
he, increases proportional to the frequency, f, and thus becomes predomi-
nantlylarger thanthe pressure change through the rotor and stator, hp + hg,
in the higher frequency range. When the frequency exceeds a certain limit,
the compressibility effect of the working liquid and the piping system becomes
apparent and the above analysis can no longer be applied.
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Simplified Dynamic Characteristics of Turbopumps

Although there are a wide variety of principles of turbopump construction,
it is fundamentally possible to calculate the dynamic characteristics of indi-
vidual turbopumps by applying the method developed in the previous paragraph.
However, the more complicated the pump, the more difficult, and perhaps
even impractical, is the analytical calculation. In this paragraph, a more
simple and practical calculation of the dynamic characteristics will be devel-
oped for the case when approximate dynamic characteristics are sufficient.

In Figure 26, the shape of turbopumps is different in each case, In all
cases, however, all of the energy input to the working liquid is produced in
the rotor. A part of this input is converted into pressure in the rotor, and
the rest is converted into pressure in the following stator or diffusor.

For the calculation of simplified dynamic characteristics, the following
assumptions are made;

1. The angular momentum of inlet flow into the rotor is steady.

2. The increase of velocity head at the outlet edge of the rotor is con-
verted into pressure rise in the following stator or diffusor without any time
delay. In other words, the stator or diffusor is very narrow and follows very
close to the outlet of the rotor.

Under the above assumptions, the change of pressure rise through the rotor,
ApR, is given by equation (2-12)

A tan \ 1 - Exp (-wmoR)
PR L wy, AV, 3—[—7 i 3 R Exp (ivt)
20 1 + 1wR C(wR, (J'R)

where AR, 0R, wR are the stagger angle, solidity, and reduced frequency of
the rotor cascade, respectively. In the case of the radial and the mixed
flow impeller, the cascade on the representative stream surface is no longer

a pure linear cascade, as it is in the case of the axial flow pump. Therefore,
the result obtained for the axial flow stage does not hold for pumps of other

types in the exact meaning.

It is, however, quite reasonable to replace this non-linear cascade
through an equivalent linear cascade. For example, an equivalent linear
cascade of a circular cascade (radial flow impeller) can be obtained by trans-
forming the circular cascade conformally into a linear cascade using a proper
mapping function. For radial and mixed flow pumps, therefore, the cascade
parameters, AR’ ¢, and w_, are taken not from the original cascade but from
the equivalent linear cascade. In the same way, axial velocity V_, means
meridian velocity in this case,

From the previous assumption, the change of pressure rise through the
stator is equal to the increase of dynamic pressure at the exit of the rotor;
thus,
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Aps
—_— = - .32 o 2
o= 1/2 [(Vuzo v, ) \'4 ]

Uz 0

tan A\g [1 - Exp (-chl]

&~ . Vuzo AV, : Exp (ivt)
1 +iwg C(wR, o*R)
The total change of pressure becomes
Ap,, + Ap tan \p [1 - Exp (-moy)]
—R__S._u.av, R R Exp (ivt)
or by making it dimensionless,
- Ap, + Ap tan A, [1 - Exp (-moy)] AQ
hpig= ZRTTPS_ R R 6 Exp (ivt) (2-23)
%uz 1+ iwg C(wR, ch) Q5
where
VPSR cos AR ,._cos AR f
Q)R = = w = —_
21Uyq  Ng ¢ Ng ¢ n

In the case where the solidity of the rotor cascade, o, is comparatively
large, namely about o 2 1,0, the above can be simplified further

r(1/2 + in) AOD

- - — & F . ) .
hr +s 2 tan )‘R Na T (1 + 1°’R) Qy ¢ Exp (ivt) (2-24)
I(1/2 + iw)
The numerical value of is listed in Table I.
NT T(1 + iw)

In Figure 27, hg , g/2 tan )\R—g—f ¢ is illustrated in the form of a polar

diagram, In the case of f = wp = 0, equation (2-24) becomes

= -2 tan X\ 29 ¢ Exp (ivt)

(hR + S) qs R Q4

and agrees with the result when the flow rate changes quasi-statically. The
ratio, hg ;g/(hy +S)qs =I(1/2 + in)/'\/; (1 +in), is also plotted in Figure 28
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as the Bode diagram, which shows the frequency response by using gain (db)
and phase shift. From this diagram two limiting reduced frequencies, (wR)L

= 0.3 and (wRr)gy = 30, are introduced. At a reduced frequency lower than
(wr)1,, the characteristics of a turbopump agree practically with that of steady-
state operation; that is, the relation between flow rate and pressure rise can

be expressed by the usual steady-state characteristics curve. On the other
hand, ata reduced frequency higher than (wp )y, the fluctuation of pressure rise
becomes almost negligible even though the flow rate fluctuates periodically. At
such a high frequency, the pressure difference due to the oscillating flow in a
conduit, hc, becomes extremely large.

Since wRr = &)1\?—)\5%’ the corresponding absolute limiting frequencies,
R

fL and fH, become

N
f1, = 0.3 LA
cos AR
(2-25)
fir = 30 _I\I‘&L =100 £
H ™" cos \g n= L

In the previous analysis, the dynamic characteristics of turbopumps are
described in the form of frequency responses. It is fundamentally possible to
calculate the response of pressure rise for an arbitrary change of flow rate
based on the frequency response.

The time constant of turbopumps can be calculated roughly by approximat-
ing the response of Figure 28 to that of the first order lag element (transfer

function is K/(Ts + 1)) and by assuming (wg);, = 0.3 represents the break point,
The result is,

1 cos A\
7 0.3 2rNR ¢én

Time constant, T

(2-26)

The above shows only the pressure change through a single-stage turbopump.
In the case of a multi-stage turbopump, the overall dynamic characteristics
are calculated by summing up the characteristics of each stage.

(hg 4 S)overa,ll = Z hr +s
stage
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SECTION 111, EXPERIMENTAL STUDY OF
DYNAMIC CHARACTERISTICS OF A CENTRIFUGAL PUMP

The dynamic characteristics of turbopumps were studied experimentally
in this Section, The experiment was conducted specifically using a centrifugal
pump that was available from the commercial market for common industrial
use. The fluctuating flow was generated mechanically by a reciprocating
piston attached to the delivery pipe line of the pump.

The instantaneous flow rate and pressures were measured and recorded
on oscillograph and magnetic tape, which enabled both visual and computer
evaluation to be made of the measurements. The test result was compared
with the theoretical prediction that was calculated based on the analysis of the
previous Section.

This study was limited to the incompressible case. The experiment was,
therefore, carried for the frequency range in which the compressibility effect
is negligible or of secondary importance. Since the occurence of cavitation
seriously deteriorates the assumption of incompressibility, cavitation in the
test pump was suppressed as far as possible,

Experimental Arrangement

Test Equipment - The test equipment consisted of three main systems; a pump-
ing system, a pulsating system, and a measurement/control system, Figure
29 shows the three~dimensional arrangement of the main hardware.

Pumping system - A centrifugal pump for common industrial use was selected
for the test pump because of its simple, robust construction and popular use.
Table II describes the details of the test pump.

The pump was driven by a 30 HP induction motor through a continuous
speed change gear. The moment of inertia of this driving system was so large
that the fluctuation of input torque to the pump during unsteady operation caused
no detectable change of rotationalspeed, so long as the frequency of fluctuation
exceeded 1 Hz,

The working liquid (city water) was fed to the pump from a head tank, which
was located 10 m (33 ft) above the pump level, contained 26 m3 (7,000 gallons)
of water, and supplied 11 N/cm? (16 psi) boost pressure to the pump inlet. This
boost pressure corresponded to Net Positive Suction Head of 21 N/cm? (30 psi)
and allowed the pump to operate cavitation-free even under the severe test con-
dition of large pressure fluctuation.

Suction and delivery accumulators were attached to the suction and delivery
pipe line, respectively. The cushioning action of their air reservoirs served
to absorb the flow fluctuation in the pipe line. Therefore, the flow fluctuation
generated by the pulsating system could be restricted between the two accumula-
tors, avoiding undesirable pressure surge in the long suction and delivery pipe

lines,
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The flow rate was regulated by adjusting a control valve. In the case of
fluctuating flow rate, only the mean flow rate, Q,, could be controlled by this
valve. The distance between the pump and the control valve was designed to
be as short as practically possible in order to obtain highest possible reson-
ance frequency. This resonance frequency determined the upper limit of test
frequency range from which any reasonable incompressible result can be
reduced. Figure 30 illustrates the detail of test arrangement around the pump.

Pulsating system - Fluctuating flow through the pump was generated by a
3 1/4-inch diameter reciprocating piston attached to the delivery pipe between
pump outlet and control valve, as shown in Figure 30.

The instantaneous flow rate, Q, increases as the piston pulls out, while
Q decreases as the piston pushes in. The fluctuation of flow rate, Q - Qg,, is
fundamentally proportional to the piston velocity. The piston was connected
to a hydraulic actuator, whose motion was electronically controlled to trace an
exact sine wave with desired amplitude and frequency. Therefore, the fluctuat-
ing flow, Q - Qg, is also sinusoidal unless some other deteriorating effects,
such as compressibility, lack of hydraulic power etc., distort the wave form.,
A 20 hp hydraulic pump was used for feeding the actuator with 1,700 N/cm?
(2,500 psi) constant pressure hydraulic oil.

Measurement and control system - Figure 31 illustrates schematically the
main measurement and control system. Suction pressure, pg, delivery pres-
sure, pg, and differential pressure, pg - pg, are measured by variable-
reluctance type pressure pickups. The deflection diaphram of these pickups
is inter changeable, so that a diaphram of proper rating is built in for each
test pressure range. The natural frequency of these pickups ranges between
15 and 25 kHz, according to their diaphram thickness, and is obviously far
above the frequency range which is of main interest in this study.

Flow rate is measured simutaneously by two different kinds of flowmeters,
a turbine flowmeter and a magnetohydrodynamic (MHD) flowmeter. A 2-inch
diameter turbine flowmeter was in installed on the delivery line between the
pulsator and the control valve, and aimed to meter accurate flow rate under
steady-state operation. It could not, however, respond quickly enough to
indicate the instantaneous flow rate under unsteady operation because of its
relatively slow Digital to Analog converter, which indicated rather the mean
flow rate, Qg, in a higher frequency range, f > 50 Hz.

A homemade MHD flowmeter was installed on the delivery line between
pump outlet and pulsator. This flowmeter consists of an acrylic pipe, a
magnet of DC exitation and two gold-plated electrodes. The output potential
from the electrodes was directly proportional to the instantaneous flow rate,
Q, provided that the flux density across the pipe remains constant. The main
advantage of this flowmeter was its very quick response, which was of special
importance in this study. One problem associated with this method was the
drift of output potential due to the asymmetry of the electro-chemical potential
around both electrodes. This drift made it difficult to measure the flow rate
continuously over a long time span with sufficient accuracy. In this experiment,
however, the MHD flowmeter was operated continuously for about 20 seconds
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with practically negligible drift, The rate of flow fluctuation, AQ/Q, = (Qmax
- Qmin)/2Q,, was estimated directly by observing the output of MHD flowmeter
displayed on the screen of the syncroscope standing by the test pump.

To check the magnitude of the mechanical vibration of the piping system,
a small piezoelectric accelerometer was cemented on the surface of the delivery
pipe between the pulsator and the control valve. This measurement was used
to detect the mechanical resonance of the piping system as well as to detect the
hyraulic resonance of liquid contained in the piping system,

The displacement of the actuator plunger was also measured by using a
potentiometer that was built in the actuator. This measurement checked the
actual motion of the pulsator piston which was supposed to be sinusoidal.

Seven electrical signals, each representing one of the above measurements,
were fed to the main amplifier unit, and were recorded both on an oscillograph
and a magnetic tape; the former for the conventional visual observation, the
latter for evaluation and processing by digital computer. Necessary calibration
was conducted to determine the overall conversion factor of each measurement,

The rotational speed of the test pump was set to a desired value by adjust-
ing the gear ratio of Varidrive transmission. Therotational speed itself is
measured by a digital counter that counts directly the number of revolutions
per second. This counter also determines the exact flow rate by counting the
pulse signals from the turbine flowmeter.

A DC power source with automatic current control supplied a constant
current of 20 A to the magnet of the MHD flowmeter.

The control system of the actuator consisted of a servomatic analyzer and
a servo amplifier. The servomatic analyzer generated a sine wave signal of
the desired intensity and frequency, while the servo amplifier intensified this
signal and fed the control current to the regulator valve of the actuator. The
feedback control minimizes any deviation of the actuator motion from the pre-
determined one. The attenuation of the initial signal generated by the servo-
matic analyzer was adjusted so that the rate of flow fluctuation, AQ/Q,, was

a desired value,

Test Program - An experiment was conducted in accordance with the test pro-
gram described in Table III. Series 1 and 2 include preliminary tests that
were intended to determine the nature and magnitude of the pressure fluctuation
inherent to this test arrangement without applying a forced fluctuation with the

pulsator.

The main test was performed at three different rotational speeds of the
test pump, n = 60, 30 and 15 rps (series 3 through 14). At each rotational
speed, four seriesoftests were conducted. First, a steady-state characteris-
tics curve was determined by varying the flow rate Q from zero to maximum
without applying any forced fluctuation. (The dynamic characteristics can be
discussed only in connection with the steady-state characteristics.)
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Pulsating tests were performed at two different mean flow rates, Q,
corresponding to the design flow rate (maximum efficiency point) and to half
of the design flow rate, respectively. The rate of flow fluctuation, AQ/Q,
was adjusted to 0.1 so long as the pulsating system could realize this condition.
Otherwise, the fluctuation rate was maintained at the maximum available value.
In most cases, the maximum fluctuation rate decreased rapidly when the fluc-
tuation frequency exceeded 30 Hz, The maximum frequency available from this
pulsating system was slightly over 100 Hz, but only with a very small fluctua-
tion rate.

A linearity test was added to determine the effect of the fluctuation rate,
A0 /Q,, on the whole phenomena, varying the fluctuation rate from 0.02 to the
maximum available value at relatively low frequencies, 3 and 10 Hz. As the
last test, series 15 determined the pressure difference between the pump suc-
tion and the delivery due to the oscillating flow generated by the pulsator with-
out running the test pump. This pressure difference, ApC, was essentially
indifferent to the pumping action itself and merely resulted from the conduit
effect of the pump casing. This test provided information that was necessary
to divide the change of pressure difference between the pump delivery and the
suction, Ap = (pgq - Pg) - (Pq - Ps)o, into two essentially different groups, that
is, into the pressure difference due to the conduit effect of the pump, Apc,
and the change of pressure rise through the pump, Apr +S-

An oscillograph recording was made for all test series, but a tape record-
ing was made only for the test series that required computer processing.

Test Results

Steady-State Characteristics - From the test series 3, 7 and 11, steady-state
characteristics of the test pump atn = 60, 30 and 15 rps were obtained. The
pressure rise through pump, py - py, and the flow rate, Q, were made non-
dimensional using the following relations;

1
pressure rise coefficient, ¢ = (pg - ps)/ Epuz2

( (3-1)

flow coefficient, ¢ = Q/m d, b, u,

)

where d,, b,, u, are outer diameter, exit width, peripheral velocity of pump
impeller, respectively.

Figure 32 shows the nondimensional steady-state characteristics of the
test pump. The design point of this pump was located at ¢ = 0.1137 (=¢p)
where the efficiency of the pump reached its maximum value. As previously
mentioned, pulsating tests were performed both at ¢ = ¢p and ¢ = 1/2 ¢épy.

The slope of the characteristics curve is read from Figure 32 as;
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The change of pressure rise, Apg , g, corresponding to a change of flow
rate, Q - Q,, can be determined from the above slope when the flow fluctua-

tion is quasi-static,

Data and Their Reduction - Pulsating tests were conducted in test series 4, 5,
6 atn = 60 rps, in series 8, 9, 10 at n = 30 rps, and in series 12, 13, 14 at

n =15 rps.

Figure 33 shows a typical oscillograph recording as a sample that illus-
trates the amplitude-time histories of seven measurements, from bottom to
top, suction pressure, pg, delivery pressure, pg, differential pressure, pd
- Py, flow rate Q by MHD flowmeter, displacement of the actuator plunger,
acceleration of the delivery pipe, and flow rate Q by turbine flowmeter, This
test was a part of series 4 and was conducted under the condition n = 60 rps,

Qo = 200 gpm (¢ = ¢p), f = 10 Hz, 2Q/Q, = 0. 1.

The time passes from right to left on the oscillograph record and each
abscissa represents a particular time, which can be interpreted from the time
mark recorded at the topmost edge. This time mark is also simultaneously
recorded on the magnetic tape to synchronizeboth recordings.

Despite the effort to obtain a flow fluctuation as perfectly sinusoidal as
possible, the one indicated by MHD flowmeter showed in some cases an appre-
ciable deviation from the initial intention., This deviation resulted partly from
the compressibility of the water column, and partly from the nonharmonic
motion of the pulsator piston, which had a tendency to be quicker during pull-out
motion than during push-in motion, especially in a higher frequency range. The
pressure fluctuation was also not a simple harmonic but contained many higher
harmonics that represented either multiple harmonics of basic pressure fluc-
tuation or standing vibrations of the water column enclosed in the piping system.
The latter could not be eliminated even with the perfect excitation of fluctuating

flow,

Because of the presence of these harmonics, it became practically impos-
sible to evaluate the correct amplitude and phase correlation between flow rate
and pressure rise through the visual observation of oscillograph records.
Nevertheless, oscillograph recording is the best means for visualization and
under standing of the whole pheonomena involved.

Test results were recorded also on the multi-channel magnetic tape for
computer processing., For each test condition, the slice time of recorded tape
was determined through the visual observation of corresponding oscillograph
records, so that each slice could contain representative measurements for
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4 seconds, excluding any measurement under transient or irregular circum-
stances. First, each slice of the tape was fed to an Analog-to-Digital conver-
ter, in which the input data on the tape were digitized at the sample rate of

500 per second to furnish the digital input data for the computer. An IBM 7094
computor was used for the processing, operating with the Random Vibration
Analysis Program (RAVAN, Reference 15). The program was developed by the
Computation Laboratory of George C. Marshall Space Flight Center, NASA, to
perform various statistical analyses of random processes normally associated
with flight and captive tests and is capable of computing various statistical
functions, such as auto-correlation functions, power spectral density distri-
bution functions, root-mean-square (rms) amplitude distribution functions,
probability density distribution function of single input functions; cross-correla-
tion functions for positive and negative lag time, cross power spectral density
distribution functions, cross phase correlation functions, and coherence distri-
bution function of two independent input functions (Reference 16). These com-
puted functions are available in the form of graphs prepared by a Stromberg-
Carlson 4020 automatic plotter.

Figure 34-1 through 34-18 show a part of the plotter outputs for the test
condition that is equal to that of Figure 33. Flow rate Q by MHD flowmeter,
change of pressure difference, Ap, suction pressure, pg, and delivery pres-
sure, pd, were analyzed as a single input function, and the result is shown in
Figure 34-1,-2,-3,-4,-8,-9,-12,-13,-14 and -18. On the other hand, cross
correlation analyses were conducted for two couples of input functions, (Ap and
Q) and (pg and pd), as shown in Figure 34-5,-6,-7,-10,-11,-15,-16, and -17.

From these results the amplitude and phase correlation of flow and pres-
sure fluctuation can be determined far more exactly than can be done by the
visual observation of oscillograph recordings. Besides the accuracy, the
computed coherence allows the estimation of the reliability of that accuracy.

Linearity Test - Figure 35 describes the amplitude and the phase correlation
of flow and pressure fluctuation. The flow fluctuation, Q ~ Qg, is expressed
by the real part of a rotating vector, AQ Exp (ivt), and the phase of pressure
fluctuation is correlated to that of flow fluctuation. The change of pressure
difference in the quasi-static operation condition, qus, can be determined
from the slope of the steady-state characteristics curve and has 180° phase
delay to that of flow fluctuation., The fluctuating pressures, Ap, qus, ADPR + S
etc., were made nondimensional by dividing through the corresponding dynamic
pressure, PU?/2, thus giving h, hys, hr ;g ete.

Linearity tests conducted in series 6, 10 and 14 were to determine the
effect of the magnitude of flow fluctuation, AQ/Q_,, on the response of pressure
difference. The result shown in Figure 36-1 (n = 60 rps), 36-2 (n = 30 rps)
and 36-3 (n = 15 rps) indicates that the nondimensional change of pressure
difference, h, has the amplitude proportional to the rate of flow fluctuation,
AQ/Q,, and the constant phase shift over the tested range of AQ/Q_ . Since
the hqs is also proportional to AQ/Q,, the above result means that the ampli-
tude and phase correlation between h and hqs remains constant, indifferent to
the magnitude of flow fluctuation.
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These linearity tests were conducted at relatively low frequencies, at
f =3 and 10 Hz, At the higher frequency range where the compressibility of
the water column becomes significant, good linear relationship cannot be
expected as in the incompressible case,

Dynamic Characteristics Test - Figures 37 through 42 show the amplitude
ratio and phase shift of h/hqs as the function of fluctuation frequency, f, at
six different test conditions., Because the pressure difference due to conduit
effect, Ap~, increases proportional to the frequency, the amplitude of h/hqs
increases also with the increase of frequency. The phase shift varies from
zero at f = 0 to around 90° at the frequencies where the Apc becomes pre-
dominantly larger than Apr 4 S.

The effect of compressibility becomes appreciable when the frequency
exceeds 30 Hz. The intensity of pressure fluctuation increases rapidly as
the frequency becomes close to the resonance frequency of the pumping
system, around 120 Hz, Figure 43 illustrates the change of pressure differ-
ence, Ap, corresponding to the flow fluctuation of AQ = 10 gpm using a polar
diagram. The pressure difference due to conduit effect, Apc, was determined
from the pulsating test of series 15 as follows;

amplitude of Apc (psi) = 0.0277 AQ(gpm) f(Hz),
phase shift of Apc = 96° delay to flow fluctuation.

The conduit effect of the pump casing is equivalent to that of a 38.,4-inch long
pipe with a 2-inch inner diameter.

Subtracting Ap . from Ap vectorially, the change of pressure rise through
the pump, Apgp +g» can be determined. Then, the amplitude and phase correla-
tion between hr 4 g and hqS can be established.

The amplitude and phase correlation of hy +S/hqs are plotted in Figures
44-1 and 44-2 against the reduced frequency of the rotor cascade,

where \g = 55° and N = 6.

The data shown in these figures were confined to those that seemed to have no
compressibility effect. The test results were relatively scattered in spite of
very careful reduction of data by computer. This was mainly because Apyp +S
cannot be determined directly but indirectly by subtracting Apc from Ap
vectorially. Especially in higher frequency range, Apgr ;g must be determined
as the difference of two vectors, Ap and ApC, that are predominantly larger
than App ; g itself, and the accuracy of obtained Apg . g inevitably deteriorates.

To compare the test result with the theory, a theoretical curve was drawn
which was calculated from equation (2-24) of Section II assuming a simplified
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model of turbopumps. The test results showed the tendency for the amplitude
ratio of hg +s/hqs to decrease with the increase of the reduced frequency at

a slightly faster rate than the simplified model theory predicted. Regarding
the phase shift of hp | S/hqs’ the experimental shift was definitely larger than
that of the simplified model theory. This suggests that the conversion of
kinetic energy at the exit of the impeller into the pressure rise in the following
volute chamber requires a certain time delay that is neglected in the simplified
model theory.

It is, of course, possible to calculate the frequency response of the test
pump more accurately by considering the mechanism of pressure recovery in
the volute chamber, thus reducing the discrepancy between theory and experi-
ment. Nevertheless, the simplicity and the generality of the simplified model
theory seems to be worth even more than its reduced accuracy.

The reduced frequency, (wg)y,, at which the dynamic characteristics
begin to separate from the quasi-static ones, is read from the test results as

(wR)L =0.1

comparing with (wg )y, = 0.3 obtained from the theory.

The time constant of the response of pressure rise to a step-like change
of flow rate was calculated by approximating the obtained frequency response
to that of a firstorder lag element and by assuming (wr)y, = 0.1 represents
the break point. The result is

1 cos AR
0.1 20 Ng én

Time cons ant, T = (3-2)

Regarding the relation between mean flow rate, Qg,, and corresponding
mean pressure rise, (pg - Pg)g, during the fluctuating operation, it is found
that the relation is practically identical to that of the steady-state character-

istics curve as far as the rate of flow fluctuation, AQ/Q,, does not exceed
the test range.

Fluctuation of Suction and Delivery Pressure - According to the force flow
fluctuation, suction pressure, Pg>s and delivery pressure, Pg> fluctuate with
the same frequency. The amphtude ratio of pq and pg is plotted against fre-
quency in Figure 45. In the lower frequency range, the amplitude of pqg is
much larger than the amplitude of pgy, because the pressure fluctuation at the
suction port is suppressed by the presence of the suction accumulator. At
higher frequencies, however, both amplitudes become more or less equivalent.
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The phase correlation of pq and pg is shown in Figure 46. Since the whole
test frequency range is under the resonance frequency, both pressure fluctua-
tions have comparatively less phase difference.

In this study cavitation in the test pump was prevented by supplying a large
boost pressure at the suction. In the case in which the boost pressure is not
large enough, the fluctuating suction pressure often causes periodic cavitation
which introduces strong nonlinearity to the system. Under the cavitating con-
dition, it was observed that the frequency of the predominant pressure fluctua-
tion was not the frequency of forced fluctuation but of subharmonics, /2, £/3,
f/4 etc.

CONCLUSIONS

The response of pressure rise of turbopumps to periodically fluctuating
discharge, termed dynamic characteristics, was studied analytically and
experimentally.

In Section I, the theoretical basis for the calculation of dynamic charac-
teristics was developed. The incompressible, inviscid flow solution around
a cascade of nonstaggered flat plates for a periodically fluctuating inlet flow
was determined. Solutions were obtained for two kinds of inlet unsteadiness,
namely for translatory oscillation and for sinusoidal gust oscillation.

The possibility of applying the results of the nonstaggered cascade to the
cascade of arbitrary stagger angle was sought. This analysis proved that the
obtained solution was applicable also to arbitrary cascade with sufficient
accuracy.

In Section II, the analytical method for calculating the dynamic character-
istics of turbopumps was developed, applying the results obtained in Section I,
A single-stage axial flow pump was chosen as the sample case and its exact
dynamic characteristics were determined based on the specific data of the
rotor and stator cascade.

For the case when even approximate dynamic characteristics are sufficient, a
simple method was also derived that enables the calculation to be made without
entering into the details of the pump design.

In Section III, the dynamic characteristics of a centrifugal pump were
determined experimentally, Pressure at suction and delivery, flow rate, etc.
were measured and the correlation between pressure and flow fluctuation was

analyzed.

The dynamic characteristics obtained from the experiment were close to
those predicted by the simplified model theory of Section II. The limiting
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frequency under which the dynamic characteristics closely agreed with the
quasi-static ones, was determined experimentally as

NR¢

=0,1———
£ cos)\Rn

In the entire study, interest was confined to the incompressible, non-
cavitating case. When cavitation occurs in a turbopump, the phenomena change
drastically from those described in this work,
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TABLE II. SPECIFICATION OF TEST PUMP

Model / Manufacturer

Suction / Discharge Diameter

Impeller Type
Outer Diameter
Exit Width
Number of Vanes
Exit Angle of Vanes

Material

Diffusor Type

1
1= ccL / Buffalo Pumps, N.Y.
. 1 .
2 inch / 1?1nch
Radial Impellecr with Backward Vanes
6.632 inch
0.260 inch

6

Bronze

Vaneless Volute Chamber

Casing Material

Normal Operating Condition
Rotational Speed
Flow Rate
Head Rise

Power Required

Cast Iron

3,500 rpm (38.33 rps)
120 gpm
150 ft

10 HP




TABLE III. TEST PROGRAM
Series test 4 m actuatin% .
NO description p D system valve measuremen
. o f test n Qq AQ/ hyd. f settings i rg(_:ord on
(rps) (gpm) 9, pump (Hz) maln ltems gram tape
1 preliminary test to check pressure ¢} o run AV: g}fgéleg | ps’ Pd1 Pd"Ps, X
fluctuation caused by hyd. pum (stop) = . p
y hyd. pump P (23891'] CV: varied | Qun & Qurb.
5 preliminary test to check pressure o 0 to DS: closed
fluctuation at min. disturbance " “max. 0 stop 0 DV-OPGP ditto X
; CV:varied
s s 0 to
3 steady-state characteristics 60 max. 0 stop 0 regular ditto X
6 0.1 or L to
4 lsating test at ¢ = 0 : .
s pulsating test at ¢ ¢D 200 less Tun 100 regular ditto X X
; _ 1 0.1 or 1 to
5 pulsating test at ¢ = P 4y 60 100 lose  Tun 100 regular ditto X X
: ; 0.02 t
6 linearity test 60 200 max. ¢ run 3 & 1C regular ditto X X
s : ot
7 steady-state characteristics 30 maf(. 0 stop ¢} regular ditto X
0.1 or 1 to .
8 pulsating test at ¢ = ¢ 30 100 run 100 regular ditto
D less X X
L _ 1 0.1 or 1 to
3 pulsating test at ¢ = > ¢D 30 50 loss | Tun 100 regular ditto X X
eari 0.02 t r
10 linearity test 30 100 max. 9run |3 & 10| regular ditto X X
11 steady-state characteristics 15 0 to 0 t o .
max. stop regular ditto X
. 0.1 or 1 to i
12 ulsating test at = 15 5 ditto
P g ¢ ¢D 50 less run 100 regular X X
. _ 1 0.1 or 1 to
13 pulsating test at ¢ = Z ¢D 15 25 less | Fun 100 regular ditto X X
: . - 0.02 t
14 linearity test 15 50 max. ¢ run 3 & 10 regular ditto X X
5 pressure fluctuation caused by 0 o 1 to .
7 actuator motion only ® run 4O regualr ditto X X
Regular valve settings; suction stop v., delivery stop v. (DS), accumulator v. (AV)..... open,
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drain v(DV)..... closed, control v. (CV).....adjusted.
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FIGURE 22. VELOCITY POTENTIAL CORRESPONDING TO EACH
UNSTEADY FLOW ELEMENT
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FIGURE 25. DYNAMIC CHARACTERISTICS OF A SINGLE-STAGE
AXIAL FLOW PUMP
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FIGURE 26. CALCULATION OF SIMPLIFIED DYNAMIC
CHARACTERISTICS
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FIGURE 34-1 TO
34-18

TYPICAL SC 4020 PLOTTER OUTPUTS PROCESSED
BY THE RANDOM VIBRATION ANALYSIS PROGRAM
(RAVAN): n = 60 rps, Q, = gpm, f =10 Hz, AQ/Q,=0.1
(SERIES 4)
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probability of Ap (%)
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+85,0218 +0.2663  +103.0264 +0,2455 +18.5047 +0,2103 +22.5057 +0.1886
+12.0030 +0.1762 +67.5173 +0,1536 +0.5001 +0.1390 +47.0120 +0.1303
CHI-SQUARE- +116.2198 2.5 PERCENT- +23.3367 5 PER CENT~- +21.0261 12 DEGREES OF FREEDOM
N= 1999 RANGE= -13.263550 TO +11,281904
MEAN=  +0.000279 S.D.=  +4.709350 SKEW= -0.094365 KURTOSIS=  +2.255822
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